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SOME NEW PROBLEMS IN FILTRATION THEORY 

I. A. Amiraslanov and G. P. Cherepanov UDC 532.546 

I. Invariant F-Integrals in Filtration Theory. The stationary filtration of an incom- 
pressible liquid in a homogeneous isotropic porous medium is described by the following 
equations [I] : 

q ) , u = O ,  v ~ = ~ . ~  ( i = t ,  2, 3L q ~ = - - ( k / p g ) p - - k x 3 ,  (1.1) 
where v i are the components of the filtration velocity; p, pressure of the liquid; k, filtra- 
tion coefficient; pg, specific weight of the liquid; ~, velocity potential; xl, x=, x3, rec- 
tangular Cartesian coordinates (the x3 axis is directed opposite to the force of gravity). 

Let E be an arbitrary closed surface in the porous medium under consideration. If with- 
in this surface there are no singular points, lines, or surfaces of the field, the following 
equations hold [2, 3]: 

~(v~,  r ink - -  2vin~vk) = O; �9 dE ( 1 2) 
V. 

~[(vr - -  2 (vl, vh),z nd dE = 0 (i, k, l = 1,2, 3) 3) nh  (1. t l 

where the nk are the components of the unit normal vector to the surface E. 

The proof of Eq. (1.2) follows from the transformations 

,f (v@'inh - -  2vivkn~) dE = I [(v~v~),k - -  2 (v~, vh),d d V  = S ( 2vr - -  2v,  vh,r - -  2v~,~vh ) d V  = O, 
Z V V 

since, according to (I.I), vi, k = Vk,i, vi,i = 0 over the entire volume V within the surface 
E. The proof of (1.3) and other such equations is analogous. 

If within the surface E there are singular points, lines, or surfaces of the field, then 
obviously the left side of Eq. (1.2) will remain unchanged under any deformations of E which 
do not affect the singularities of the field. 
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We denote by Fk the following expressions [2, 3]: 

Fh = O--x ~ ( - -  vivin~ + 2vi~;km) dE (k = I,  2, 3), ( 1 . 4 )  
2~" 

where p is the density of the liquid and E is the porosity of the medium. The quantities Fk 
are invariant characteristics of the singularities of the field that are enclosed within the 
closed surface Z. They have the dimensions of force (in the plane case the dimensions of 
force divided by length). The vector P(FI, F2, F,) is equal to the principal vector of the 
configuaration forces acting on an impenetrable body with surface Z. In the case of a motion- 
less point singularity it yields the force acting from the direction of the field on the in- 
dicated singularity. In the case of a point singularity which moves under the influence of 
the field, its value may be regarded as the dissipation of the field energy expended in 
moving the singularity by a unit length. The calculation of the F-integrals at the singu- 
larities of the field is carried out by means of the apparatus of asymptotic F-integration 
[2, 3 ] .  

For example, if the singularity is a point source with power q at the origin, so ~hat 

v i = q x i / 4 a r 3 ~ - v i o  (r 2 = xix~,: i = 1, 2~ 3)~ 
t h e n  i n  t h i s  c a s e  [2] 

r~ = --ps-~qVho (k = i ,  2,1 3). ( 1 . 5 )  

Here vio is the regular component of the filtration velocity at the origin. 

We give below some obvious F-integrals which can be derived from the law of conserva- 
tion of mass: 

S vinidE ~ O, J vi, hnidZ = (i,  k = t ,  2, 3) . . .  
P 

0 

We consider some new problems in the theory of filtration whose effective solution can be 
obtained by using invariant F-integrals. It should be noted that these are powerful calcu- 
lation devices which enable us to construct easily a finite algebraic system approximately 
equivalent to the initial boundary-value problem [2] (analogous to the method of finite ele- 
ments). 

2. Theory of Contact Filtration under Dams. Along the concrete foundation of a dam 
there is often contact filtration, when there is a thin layer of water between the soil and 
the dam [4]. We shall discuss the theory of this phenomenon by means of a very simple 
illustrative example. The theory can be generalized without any difficulties of principle 
to an arbitrary configuration of dam and soil. 

Suppose that the soil takes up a half-space y < 0, the impermeable dam (the apron) 
occupies the layer y > 0, Ix[  < ~, water at pressure p+ occupies the region y > 0, x < --~, 
and water at pressure p- occupies the region y > O, x > +l. For the sake of definiteness, 
we shall assume that p+ > p_; this means that the water flows under the dam from left to 
right (Fig. !). 

The problem is considered to be plane. The fundamental equations of a plane problem, 
using the complex potential f(z), according to (1.1), can be written in the form 

v ~ + w y  = ! ( )~ p = - - (pg /k)  ~ e  l(z) - -  p g y  (z = z + ty ) .  ( 2 . 1 )  

Here the y axis is directed opposite to the force of gravity. 

The boundary conditions of this problem have the form 
for Ix[ < l ,  g = 0 vy = O~ ~ r  ]x I > l Op/ax = 0 

( 2 . 2 )  
(v~ + ivy .-~ 0 as x -b iy --~ oo). 
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Hence, on the basis of (2.1), we have the following boundary-value problem for the com- 
plex potential: 

~r I m z  = 0 ,  IRezl  < l  Im/ ' ( z )  = 0 ,  

for I R e z [ > /  R e / ' ( z ) = 0  ( ] ' ( z ) -+O as z . .+oo) ,  ( 2 . 3 )  

and the solution of this problem will be the following: 

H(z) = C~/'I/z ~ - -  l 2 (]/Z ~ - -  l~-'~ z as Z---~ ~ ) .  (2 .4 )  

The real constant C is determined from the additional condition 

l 

~ @ d x = A p ( A p = p + - - p _ )  ~r g = O .  (2 .5 )  J ~  
--1 

Substituting the solution (2.4) into (2.5), in accordance with (2.1), we find 

C = - - k A p / ~ p g .  (2..6) 

Near the singular point z = I the solution of (2.4), (2.6) has the form 

]'(z) = K / ' i / 2 ~ e ,  vx = - - K  sin (r (2 .7 )  

v r = K ~ o s ( ~ / 2 ) / V 2 ~ l e l  (8 = z - l = Igloo% lel  << l), where 

K = kAp/pgV~l"--~ (2 .8 )  

Using (1.4), (2.7), we calculate the invariant characteristics of the singular point 
Z = ~: 

F 1 = (p/2sS)K2~ F~ = r s = 0. ( 2 . 9 )  

In the present case, according to (2.8), we have 

rx = k~(hP)2/2pe2g2nl. ( 2 . 1 0 )  

The quantity rl represents the configuration force of the filtration flow acting on the soil 
at the singular point z = I and causing all possible critical phenomena in the vicinity of 
this point (for example, the beginning of contact filtration, the formation of a local 
cavity in the soil, or, conversely, a bulge in the soil and the breakthrough of a jet of 
water under the dam). Naturally, the appearance of such critical phenomena, which go beyond 
the limits of the filtration we are considering, will be characterized by appropriate criti- 
cal values of the quantity Ft. We shall denote by Fc the constant characterizing the begin- 
ning of contact filtration, so that when FI < Fc, there is no water under the dam, whereas 
when FI > Fc, a layer of water is formed under the dam and contact filtration takes place. 

From this, using (2.10), we find the critical pressure drop across the dam: 

(Aph = ( e~k )V2apr J .  (2.11 

The s o l u t i o n  c o n s t r u c t e d  above i s  a p p l i c a b l e  on ly  f o r  5p < (hP)e-  When 5p > (&P)c, we 
must t a k e  a c c o u n t  o f  the  change in  the  f i l t r a t i o n  reg ime t h a t  r e s u l t s  f rom the  l o c a l  e r o s i o n  
of  s o i l  p a r t i c l e s .  

The p roposed  t h e o r y  o f  a b r e a k t h r o u g h  of  w a t e r  under  a dam i s  a p p l i c a b l e  on ly  to  t hose  
problems in which there are singular points. Such points, with trivial exceptions, will 
always exist -- for example, the boundary points of the apron (for arbitrary curvilinear out- 
lines of the apron and channel bottom). According to the microscope principle [2], the fil- 
tration field in a neighborhood of these points can always be described by formula (2.7), 
and the field-intensity coefficient K will be a function of the geometric and physical 
parameters corresponding to a boundary-value problem of the theory of filtration. An anal- 
ogous singularity may also be found at the end of a sheet piling, but physically this case 
is less interesting, since the particles of soil cannot be washed away by the flow of water, 
and therefore near the end of the piling there will be formed a relatively stable region of 
nonlinear filtration, in which the structure of the soil particles is different from the ini- 
tial structure. 

We make the following natural physical assumption: the erosion of soil particles at a 
point of the surface is determined by the filtration velocity at that point. From this 
assumption it follows that the erosion of the particles always begins at singular points, 
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where the filtration velocity is infinitely high. Obviously, according to this general 
assumption, the beginning of particle erosion near a singular point is characterized by 
some critical value of the field-intensity coefficient at that point, K = K c (when K < Kc, 
Ehere will be no erosion of the particles). The value of Kc depends on the strength of the 
pond between the soil particles, on their dimensions and shape, and on the physical proper- 
ties of the liquid, but it is independent of the macroparameters of the problem (the weight 
of the dam, the pressure drop, the geometry of the apron, etc.). Therefore for a given com- 
bination of soil and liquid, the value of Kc may be determined experimentally (for example, 
by using a model). 

According to the universal relation (2.9), the constants F c and K c are connected by the 
following equation: 

2e~Fc = pKg. 
Thus, the K c theory, based on natural physical assumptions, and the F e theory, arising 

out of the general theory of the motion of the singularities of a physical field [2], lead 
to identical results. 

Problems involving the dynamic interaction of the filtration flow with the soil skeleton 
are of great importance (see, for example, [1, 4-6]). It should be emphasized that the pro- 
cess by which an individual particle is broken off from the surface of the soil depends only 
slightly on the macrostresses in the skeleton [6]; it may take place even at very high com- 
pressive macrostresses. Physically it is completely different from the process of macro- 
destruction of the soil skeleton [6]. 

The breakthrough of water over a dam obviously begins with the elution of soil particles 
near the right-hand singular point (where z = l, in Fig. I). The further development of the 
process will not be considered here. 

However, if we assume that the transverse dimension of the cavity formed under the dam 
close to the point z = ~ as a result of soil erosion is negligibly small in comparison with 
its length and that the pressure variation in this cavity is also negligibly small, then the 
nature of the development of the cavity may be appraised by using formula (2.11), in which 
the value of I should be regarded as a variable parameter. Obviously, on the basis of this 
relation the process of development of the cavity, once it has begun, will be unstable, since 
the irreversible reduction of ~ is aceompanyied by a reduction in Ap. The rate d~/dt ob- 
vously depends also on the process of transport of the particles in the cavity. 

3. Erosion of the Soil by a Jet of Water. Suppose that an axially symmetric jet of 
water under a high head hits a half-space of porous soil, forming a thin axially symmetric 
cavity of length L which develops along its axis (Fig. 2). How does L vary with the velocity 
Vo of the initial jet and with its cross section So? 

We shall answer this question on the following assumption, which defines the mathe- 
matical model of the phenomenon: all the water from the jet goes into the soil, and the 
dimension of the region of intensive nonlinear filtration is small in comparison with L. 

Thus, we arrive at a problem concerning the motion of a point filtration source of 
liquid perpendicular to the boundary of the half-space. We shall assume that all of the 
half-space is saturated with liquid. The effect of the cavity and the deformed boundary of 
the half-space on the liquid-flow field will be disregarded, which is justifiable in the 
region far from the cavity and from its free boundary. 
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The liquid-flow field in the half-space x3 < O, together with its boundary, under the 
action of a source with power q at the point (0, 0, --L) is described by the following poten- 

tial: 

[ --I _ _j_ i ] (3.1) 

According to (1.5), (3.1), the values of Fk at the singular point will have the form 

r I  : [ '2 : O, r 3 = pq~/ ( t6ne~L ~) (q = VoSo). (3.2) 
The motion of the source takes place under the action of the configuration force Fa, 

which is set equal to the dissipation of the energy expended by the filtration field in dis- 

placing the source by a unit length. 

We take the simplest concept concerning this quantity and assume that it is constant; we 

shall denote it by Fc. (When F3 < Fc, there is no erosion of the soil by the jet of liquid, 
and the inequality F~ > Fc is impossible according to our concept.) Hence, on the basis of 
(3.2), we obtain the desired relation expressing the depth of penetration of the jet L as a 

function of vo and So: 

L = (voSJ4s)(plurr 
This theory can be easily generalized to other soil shapes and other boundary conditions" 

at the soil surface; the latter factors are essential. In this section we have used only 
the simplest variant of the general theory of the motion of the singularities [2, 3] of a 
physical field. A more exact expression in this case will have the form dL/dt = f(F3), where 
t is time and f is an experimentally determined function. 

For dense soils, the expression for Fa in (3.2) will contain another term, which repre- 
sents the contribution of the elastic field of a moving concentrated force. 

4. Apron with Drainage Openings. Sometimes drainage openings are made in the aprons in 
order to reduce the pressure. The debit of an opening depends on its position and structure. 
Let us Consider this question by using the example Of Sec. 2, assuming in addition that in 

the scheme of Fig. I there is a sink of liquid of intensity q at the point y = 0, x = a. 

The construction of the drainage opening at this point is shown on a large scale in Fig. 

3. It is formed by the impermeable planes y = h and x = a + H. 

According to (].2), using the notation of the plane problem, we have* 

~ (-- v2n~ + 2vnv~) ~ O, (4.1)  d~ 

where v is the velocity modulus; ~ is the closed contour in Fig. 3. It consists of a semi- 
neighborhood of radius H much larger than the radius of the opening but much smaller than ~, 
of nonpermeable planes at y = O, y = h, and x = H, of the plane x = a -- H and of two small 
neighborhoods containing the boundary of the opening. The direction in which the contour E 
is traversed is indicated by the arrow in Fig. 3. 

The integral (4.1) vanishes along two small neighborhoods due to the local symmetry of 
the field, and also due to the fact that these neighborhoods are traversed in the reverse 

*In the general case (where the drain is filled with soil with characteristics different from 
the main region or contains no soil) the relation (4.1) is not exact; this is due to the fact 
that at the interface between the soil layers the normal components of the filtration veloc- 
ity vary continuously, while the tangential components are discontinuous. 
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direction, i~Legral (4.1) vanishes along the nonpermeable planes at y = 0 and y = h since 

they intersect at v n = 0, n x = 0, On the semineighborhood the terms of the field are described 
by the potential 

/ ' ( z )  = - - q / n ( z  - -  a) + v o + O(z  - -  a),  (4.2) 

where vo is a real constant. Making use of (4.2), we can calculate the integral (4.1) along 
the semicircle; it is found to be equal to --qvo. The integral (4.1) along the impermeable 
segment x = a + H~ is negligibly small when the value of H~ is larger than two or three open- 
ing diameters, because the velocity decreases exponentially for x § ~, y > 0. The integral 
(4.1) along the segment x = a -- H~, for the same condition, can easily be calculated directly; 
it is equal to +qvd, where v d is the filtration velocity when x +~-~, y > 0. It is obvious 
that q = vdh. 

Thus, from Eq. 
tire field of Fig. 

(4.|) we obtain the condition (4.3), Vd = --Vo. The potential of the en- 
I, with an additional sink at the point z = a, will be the following [I]: 

--kAp~ [ pgq l/'# --"~-~ ] 
kAp(~ - ~) (4.3) 

From this we find the value of vo by the formula (4.2): 

vo = k A p / ( ~ p g V  ls - -  aS). (4 .4 )  

Using Eqs.  ( 4 . 3 ) ,  ( 4 . 4 ) ,  we f i n d  the  d e s i r e d  v a l u e  of  the  d e b i t  o f  the  d r a i n a g e  o p e n i n g :  

q = k h A p / ( n p g ' l / l  s - -  aS).  

The problem concerning this point was solved in [l]. However, that work did not raise the 
question of determining the flow rate q. 

5. Problem of a Drainage Pipe. Suppose that in the half-space xa < 0 there is a right- 
cylinder pipe with impermeable walls at an angle a to the boundary of the half-space (Fig. 
4). The end of the pipe is at a distance L from the boundary, and it is assumed that r<< L, 
where r is the radius of the pipe. The unperturbed field of the liquid flow is described by 
the potential 

r = - - v ~ x l .  (5.1) 
The p e r t u r b e d  f i e l d  f a r  from the  end of  the  p ipe  i s  o b v i o u s l y  d e s c r i b e d  by the  p o t e n t i a l  c o r -  
r e s p o n d i n g  to  the  p o i n t  s i n k  q a t  the  end of  the  p i p e ,  i . e . ,  a t  the  p o i n t  (0,  O, --L),  a c c o r d -  
ing  to the choice of the coordinate system in Fig. 4: 

(p=~-~ 1 / . x 2 _ _ x 2  , / x  _, L ' 2  ----- �9 (5.2) 
v IT 

Here and hereafter, the upper and lower signs before the second term correspond to the free 
boundary and the impermeable boundary of the half-space, respectively. 

The question arises: what is the value of q? The answer to this question can be ob- 
tained by a method analogous to the one used in Sec. 4. According to (1.2), we have 

~z ( " : - -  2v~vt)  d 2  = O, V~l)~n t 

where we take as E a closed surface enclosing the end of the pipe and situated at a distance 
from it which is large in comparison with r but small in comparison with L, plus the inner 
and outer surfaces of the pipe which are inside the above-mentioned surface. 

Calculating the F-residue [2, 3], we find 

Vd ~- Vto, (5 .3 )  

where v d is the filtration velocity in the tube and Vto is the regular component on the t 
axis of the filtration velocity corresponding to the external field (5.1), (5.2). We have 

vto = v ~  cos ct ~: q sin ~ / t 6 ~ L L  

Since q = vd~r 2, we find on the basis of (5.3) that 

q ---- ~r2v~ cos a/(l  q= r 2 sin a / 1 6 L ~ ) .  
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The second term in the denominator of this formula is negligibly small in the approximation 
considered here. 
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